
Psychophysiology. 2022;00:e14029.	 wileyonlinelibrary.com/journal/psyp	    |  1 of 14
https://doi.org/10.1111/psyp.14029

© 2022 Society for Psychophysiological Research.

1   |   INTRODUCTION

Deception is widespread in our daily life and people may 
deceive for various reasons, such as evading punishment 
and gaining self-benefits, as well as prosocial motivation 

(DePaulo et al., 1996). However, most deception have neg-
ative effects and could further pose a threat to the safety 
and stability of society (Ganis et al., 2011). To date, stud-
ies on deception detection have attracted significant at-
tention in various fields, and feasible future applications 
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Abstract
In this study, brain imaging data from functional near-infrared spectroscopy 
(fNIRS) associated with skin conductance response (SCR), heart rate (HR), and 
reaction time (RT) were combined to determine if the combination of these in-
dicators could improve the efficiency of deception detection in concealed infor-
mation test (CIT). During the CIT, participants were presented with a series of 
names and cities that served as target, probe, or irrelevant stimuli. In the guilty 
group, the probe stimuli were the participants’ own names and hometown cities, 
and they were asked to deny this information. Our results revealed that probe 
items were associated with longer RT, larger SCR, slower HR, and higher oxy-
hemoglobin (HbO) concentration changes in the inferior prefrontal gyrus (IFG), 
middle frontal gyrus (MFG), and the superior frontal gyrus (SFG) compared 
with irrelevant items for participants in the guilty group but not in the innocent 
group. Furthermore, our results suggested that the combination of RT, SCR, HR, 
and fNIRS indicators could improve the deception detection efficiency to a very 
high area under the ROC curve (0.94) compared with any of the single indicators 
(0.74–0.89). The improved deception detection efficiency might be attributed to 
the reduction of random error and the diversiform underlying the psychophysi-
ological mechanisms reflected by each indicator. These findings demonstrate a 
feasible way to improve the deception detection efficiency by using combined 
multiple indicators.
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require more reliable and effective methods for detecting 
deception (Ben-Shakhar et al., 2002; Gronau et al., 2005; 
Matsuda et al., 2012; Nahari & Ben-Shakhar, 2011; Zhang 
et al., 2017). Deception detection has traditionally relied 
on the use of single measurement, including behavioral, 
psychophysiological, or neuroimaging measures, as in-
dicators, with some of these approaches achieving de-
tection efficiencies higher than 80% (Meijer et al., 2016). 
Although some studies have already applied the use of 
multiple measurements in different deception detection 
paradigms, the efficiencies of these strategies have rarely 
been addressed with combining fMRI (fNIRS) based 
brain imaging data and physiological measures (Bhutta 
et al., 2015; Gamer et al., 2007). The present study aimed 
to investigate whether combining brain activity from 
fNIRS, skin conductance, heart rate, and behavioral mea-
sures could enhance deception detection efficiency in a 
three-stimulus concealed information test.

The concealed information test (CIT; Lykken,  1960) 
has been used in both laboratory research and the judi-
cial field for distinguishing between guilty and innocent 
participants (Meijer et al., 2007). Generally, three stimuli 
are included in the standard CIT: (1) Crime-related items 
(also called probe items) that include information related 
to criminal behavior which is usually hidden by crimi-
nals. (2) Irrelevant items that are unrelated to criminal be-
havior and with which both criminals and innocents are 
unfamiliar. (3) Target items that are additional irrelevant 
messages requiring different reactions from the irrelevant 
and probe items. These items are used to maintain the at-
tention of the participants (Rosenfeld et al., 2006).

The reaction time (RT) based CIT has been shown to 
successfully distinguish between participants with and 
without criminal knowledge (Ben-Shakhar, 2012; Farwell 
& Donchin, 1991; Rosenfeld et al., 2004, 2006). The results 
of meta-analysis studies about lie detection techniques in-
dicated that the mean effect size (Cohen’s d) is 1.26 for 
RT, which already higher than Respiration Line Length 
(Cohen’s d  =  1.11) and Heart Rate (Cohen’s d  =  0.89) 
(Meijer et al., 2014; Suchotzki et al., 2017). The rationale 
for RT-based CIT can be explained from the cognitive per-
spective which holds that deception is more cognitively 
demanding than telling the truth (Verschuere et al., 2011; 
Vrij, 2008).

Physiological indicators based on the autonomic 
nervous system have been historically used in the CIT 
paradigm to detect concealed information (Iacono & 
Lykken,  1997). Specifically, different psychological pro-
cesses lead to physiological changes that can be measured 
(Synnott et al., 2015). Skin conductance responses (SCRs), 
respiration line length (RLL), and heart rate (HR) are 
the most common indicators examined with a polygraph 
(Gamer et al., 2008). In the physiological-measure-based 

CIT, a typical response pattern for a person who recognizes 
crime-related information includes larger SCRs, a shorter 
RLL, and a decelerated HR, which is also called the CIT 
effect. Studies have recently suggested that these physio-
logical responses are driven by different mechanisms and 
could be explained by the response fractionation model 
(Klein Selle et al.,  2019). The increased SCR reflects an 
orienting response, whereas RLL and HR reflect attempts 
to inhibit arousal (AI; Klein Selle et al., 2016; Verschuere 
et al., 2007).

The development of brain imaging technologies such 
as functional magnetic resonance imaging (fMRI) has 
made it possible to better understand the neurological 
basis of deception by measuring the activity of the central 
nervous system (Bles & Haynes, 2008; Gamer et al., 2007; 
Sai et al.,  2021). Most previous researches have adopted 
the differentiation of deception paradigm (DDP), which 
focused on a comparison between deception and truth 
(Gamer et al., 2012). However, only a few of studies have 
used fMRI-based CIT to explore the neural correlates of 
the CIT and whether brain activities elicited during the 
CIT can be used to distinguish guilty participants from in-
nocent participants (Gamer et al., 2007, 2012; Suchotzki 
et al., 2015). The mechanism of fMRI-based CIT has been 
explained as response inhibition (Suchotzki et al., 2015), 
although the role of the orienting response has also been 
discussed (Gamer et al.,  2012). Furthermore, fMRI has 
several limitations, such as high costs, noisy acquisition, 
and restrictions on subjects which reduce the ecological 
validity of this approach for forensic applications (Farah 
et al., 2014).

Functional near-infrared spectroscopy (fNIRS) has 
shown significant potential in neuroimaging as it is por-
table, cost-effective, quiet, with a high tolerance rate and 
a high temporal resolution compared with fMRI (Lin 
et al.,  2017, 2018; Liu et al.,  2017). Given these advan-
tages, a number of studies have used fNIRS to examine 
the neural correlates of deception in relatively natural and 
realistic settings, and these studies consistently found that 
deception is associated with greater activity in the prefron-
tal cortex (PFC), specifically, in the SFG, MFG, and IFG 
(Ding et al., 2013, 2014; Lin et al., 2021; Sai et al., 2014; 
Tian et al., 2009). However, only a small number of studies 
have used fNIRS to detect deception (Bhutta et al., 2015; 
Sai et al., 2014).

Multiple autonomic measurements have been com-
bined to detect concealed information, and most studies 
showed improved detection efficiencies with combina-
tions of autonomic responses compared with single 
measurement (see a review, Gamer, 2011). With the de-
velopment of event-related brain potential (ERP) based 
CIT, ERP has been combined with autonomic-based 
CIT (Gamer & Berti, 2010; Matsuda et al., 2009), with 
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the combination of ERP and autonomic measurements 
achieving better discrimination accuracy (Gamer & 
Berti,  2010; Matsuda et al.,  2011). This indicates that 
combining measurements from the autonomic central 
nervous systems result in improved detection validity. 
In addition, fMRI also has been used in CIT associated 
with autonomic indictors (Gamer et al.,  2007, 2012; 
Suchotzki et al.,  2015). However, most of these fMRI-
based studies (e.g., Suchotzki et al., 2015) did not involve 
the calculation of the combined detection efficiency, 
while others found that the addition of autonomic mea-
sures to fMRI had little effect on the diagnostic ability 
(Kozel et al., 2009). Another brain activation-based in-
strument, fNIRS, also has been combined with auto-
nomic measures to detect concealed information, and 
Bhutta et al. (2015) demonstrated the feasibility of com-
bining fNIRS and the physiological measurement for 
detecting deception, showing a detection efficiency of 
86.5%, which was higher than that of single measure. Sai 
et al. (2014) used the CIT paradigm and required guilty 
participants to conceal crime-related information from 
a mock crime. The fNIRS detection efficiency of guilty 
participants versus innocent participants was 75%, 
and when fNIRS was combined with RT, the efficiency 
reached 83.3%. As previous studies have suggested 
(Gamer,  2011), behavioral measurement, autonomic 
measurements, and brain activation-based measures 
are likely to be associated with different psychophysio-
logical mechanisms. The combination of measures thus 
reduces random error and enhances reliability, suggest-
ing that the combination of multiple measures may el-
evate the detection efficiency of the CIT.In the current 
study, we combined behavioral data (RT), physiologi-
cal data (skin conductance response, SCR; heart rate, 
HR), and brain imaging data (fNIRS data) to detect con-
cealed information in a standard three-stimulus CIT. 
Specifically, RT reflects cognitive effort, SCR reflects the 
orienting response, HR reflects arousal inhibition, and 
fNIRS reflects response inhibition. This allows the inte-
gration of autonomic and central nervous system data 
for deception detection. The combination of multiple 
measures also could reduce the random error and en-
hance the reliability. To the best of our knowledge, this 
is the first study using fNIRS imaging data combined 
with RT, SCR, and HR to detect concealed information. 
We hypothesized that, RT, HR, SCR, and imaging data 
from fNIRS recordings could distinguish probe and ir-
relevant items in the guilty group but not the innocent 
group. We also expected that RT, HR, SCR, and fNIRS 
could distinguish guilty from innocent participants, sig-
nificantly above the level of chance. Also, given that the 
association of multiple indicators with variable mecha-
nisms and that the combination of multiple measures 

could reduce random error, we expected the combi-
nation of RT, SCR, and HR with fNIRS measurements 
could improve the deception detection classification 
of a single indicator resulting in a better classification 
method.

2   |   METHOD

2.1  |  Participants

Seventy-two right-handed students (34 male) from the 
Hangzhou Normal University participated in this study, 
with an age range of 17–27 (M = 21.2, SD = 1.9 years). All 
participants had a normal or corrected-to-normal vision 
and were without any history of psychiatric or neurologi-
cal disorders. Participants read and signed an informed 
consent before the experiment and could quit the task at 
any time without penalty. The study was conducted under 
guidelines approved by the ethics committee of Hangzhou 
Normal University.

The data from one participant were excluded from 
analysis due to the participant’s misunderstanding of the 
instructions and pressing the inverse buttons when pre-
sented with her name and hometown. Data from four 
participants were excluded because of technical problems 
with having no available triggers. Data from five partic-
ipants were excluded due to the non-responsivity of the 
SCR data, while data from two participants were excluded 
because of low signal quality of the fNIRS data. Finally, 
60 available participants’ data were used for the analysis 
(30 male).

2.2  |  Procedure

Before the task, the participants first signed an informed 
consent form and were then presented with a list of names 
and cities. Participants were instructed to select those 
with special personal meaning (e.g., the names of parents 
or friends, cities where their schools were located). These 
two examples of unselected information (two categories: 
name or city) were randomly used as irrelevant items in 
the CIT task (Verschuere et al.,  2010). The participants 
were then randomly divided into innocent or guilty groups 
in the task. A three-stimulus CIT design was used in this 
study, containing target, probe, and irrelevant stimuli. For 
all participants, a Chinese star’s name (“Dehua Liu”) and 
his hometown (“Hong Kong”) were used as targets. Four 
other names and four cities were assigned as irrelevant 
items. For the guilty group, the participant’s own name 
and hometown were the probe stimuli, whereas for the in-
nocent group, the probe stimuli were an irrelevant name 
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and city. Participants were unfamiliar with all the irrel-
evant names and cities.

Before the CIT test, a cover story was told to all partici-
pants, that an information leakage incident occurred in an 
intelligence agency, and the name and hometown infor-
mation of the spy were leaked. Then, the participants were 
asked to imagine a scene in which they were suspected to 
be spies when preparing to board a plane at an airport and 
were required to prove their innocence through a lie detec-
tor. During the CIT test, the participants were presented 
with a sequence of names and cities and were asked to press 
the left button as soon as possible when they recognized the 
stimuli and to press the right button when they did not rec-
ognize the stimuli (the meaning of buttons had been coun-
terbalanced). For example, when they saw the target stimuli 
Dehua Liu and Hong Kong, they should press the left but-
ton to indicate that they recognized these stimuli. When the 
participants in the guilty group were presented with probe 
stimuli, they were asked to press the right button to deny 
the recognition of these stimuli and avoid being detected as 
spies. The participants were thus lying as they recognized 
the stimuli. All stimuli were presented in a pseudo-random 
order without the repetition of two consecutive items.

During the CIT test, participants were seated comfort-
ably in front of a computer to avoid physical movements 
and to ensure the accuracy of the results. There were 
two targets, two probes, and eight irrelevant items in the 
test. Each item was repeated eight times, thus the whole 
task contained 96 trials. At the beginning of each trial, a 

fixation was presented for 1 s and the stimulus item was 
presented for 1 s with an inter-stimulus interval (ISI) of 
14 s (Figure 1a). If the participants did not respond within 
1 s, feedback (“TOO SLOW”) was presented for 4  s. The 
experiment ended automatically if the participants had 
missed five responses in the task. The whole experiment 
lasted for approximately 26 min.

2.3  |  Data acquisition for concurrent 
fNIRS and physiological recordings

The experiment was performed using a Continuous Wave 
(CW6) fNIRS system (Techen, Inc., Milford, MA, USA) with 
six laser sources and fourteen optical detectors. In the present 
study, a homemade plastic patch was used to acquire fNIRS 
data with probes positioned according to the international 
10–20 system so that the lowest probes were aligned with the 
Fp1-Fp2 line. The optodes were symmetrically arranged in 
a 7 × 30 cm2 area with a 3-cm distance between each source 
and detector. The diffuse NIR light from each source through 
the cortical region was acquired by its nearest detector and 
24 source-detector pairs (channels) were measured in total 
(Tian et al., 2009; Figure 1b). The sampling rate for the ac-
quisition of the fNIRS data was 25 Hz. Moreover, the 3D-
magnetic space digitizer Patriot Digitizer (Polhemus Inc., 
Colchester, Vermont, USA) was used for a standard partici-
pant (head size: 59 cm) to obtain the 3D spatial information 
of each optode. NIRS-SPM software was used to estimate the 

F I G U R E  1   (a) Schematic illustration of a single trial for the concealed information test task. (b) The arrangements of the optodes for the 
fNIRS system (the red circles represent sources, the blue circles represent detectors, and the green rectangles represent the fNIRS channels). 
(c) The estimated locations of the 24 fNIRS channels on the prefrontal cortex. (d) The experimental setup
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3D location in the Montreal Neurological Institute (MNI) 
space (Singh et al., 2005), and the 3D spatial coordinates of 
24 channels are shown in Figure 1c.

The electrodermal and electrocardiogram (ECG) data 
of the participants were acquired using a BIOPAC MP160 
system (BIOPAC Systems, Inc., Goleta, CA, United 
States). SCR measures were obtained using two Ag/AgCl 
electrodes (TSD203) filled with GEL101 that were placed 
on the phalanges of the index and middle fingers of the 
left hand. All the participants washed their hands prior 
to the attachment of the electrodes. ECG measurements 
were acquired using three electrodes placed in a lead II 
configuration. The negative electrode was placed below 
the right clavicle, the positive electrode was placed on 
the left lower abdomen, and the ground electrode was 
placed on the right lower abdomen. The BIOPAC MP160 
system was set at 1 Hz low-pass band for SCR signals 
and at 1–35 Hz for ECG signals, and the SCR, ECG sig-
nals were sampled at 1000 Hz using the AcqKnowledge 
v. 4.1 (BIOPAC Systems, Inc. Goleta, CA, USA) software 
and the signals were displayed on a laptop. E-prime 2.0 
software was used for stimulus presentation during the 
experiment.

2.4  |  Data analysis

2.4.1  |  fNIRS data analysis

Homer2 software (Huppert et al., 2009) was used for fNIRS 
data preprocessing. The raw data were first converted to 
optical density changes and then converted to oxyhemo-
globin (HbO) and deoxyhemoglobin (HbR) concentration 
changes using the modified Beer–Lambert Law (Cope & 
Delpy, 1988). The HbO and HbR changes were then fil-
tered with a low-pass filter of 0.2 Hz and a high-pass filter 
of 0.01 Hz. In this study, only HbO changes were analyzed 
as the change in HbO is the more sensitive indicator of 
regional cerebral blood flow changes (Homae et al., 2007). 
The duration of each trial was 15 s, containing a 1-s prior 
onset period, a 1-s stimulus period, and a 13-s recovery pe-
riod. We calculated the run-averaged HbO concentrations 
and the grand-averaged HbO data for the probe and ir-
relevant stimuli of guilty/innocent groups. The mean val-
ues of 5–9, 4–10, and 1–14 s of the run-averaged HbO data 
for each participant were extracted by each channel for 
statistical analyses as the HbO peaks were located within 
these time windows. As the results from these three time 
windows were almost same, we chose 5–9  s window as 
the representative time window for fNIRS HbO changes 
for further analyses. All p-values of the F-test were cor-
rected using a false-discovery-rate (FDR, p < .05; Singh 
& Dan,  2006). Statistical analyses for fNIRS data were 

conducted using SPSS 20.0. Also, the HbO changes were 
mapped using the BrainNet Viewer (Xia et al., 2013) tool 
to show the brain imaging activity of the probe/irrelevant 
items in the guilty/innocent groups.

2.4.2  |  Physiological responses

For the SCR data, AcqKnowledge v.4.1 (BIOPAC Systems, 
Inc., Goleta, CA, United States) was used to calculate the 
peak-to-peak amplitude, defined as the maximal change 
between the peaks (Yu et al., 2019). For each participant, 
the mean values of the peak-to-peak amplitude during 
1–5 s were calculated.

For ECG data, AcqKnowledge v.4.1 and MATLAB (The 
MathWorks, Natick, MA, USA) were used to detect the R 
waves and R peaks and to calculate the distance between 
them with an artifact detection and rejection procedure 
(De Clercq et al., 2006; Klein Selle et al., 2016). Prior to 
analysis, the inter-beat intervals were converted to HR in 
beats per minute (bpm) per real-time epoch (1-s). These 
second-by-second post-stimulus HR values were baseline-
corrected by subtracting the average HR value in the 3-s 
preceding stimulus onset, resulting in 10 post-stimulus 
difference scores (△HR). It has been demonstrated that 
the average values of all △HR scores were better than 
the minimum of all △HR scores as a detection measure 
(Gamer et al., 2008; Klein Selle et al., 2016).

Because of individual differences in physiological re-
sponsivity, within-subject standard Z-scores were calculated 
separately for SCR and HR (the target item was excluded 
from the standardization, Klein Selle et al., 2019). For SCR 
and HR measures, those responses were removed if the Z-
scores were larger than 5 or smaller than −5. Furthermore, 
participants whose response fell below 0.01 of the standard 
deviation of the raw SCR scores were considered to be non-
responders and their data were eliminated from all SCR 
analyses (Geven et al., 2018). Finally, a total of 1.1% of HR 
and 1.3% of SCR responses to the stimuli were eliminated 
due to excessive movements and outliers.

For SCR and HR data, the probe item data were used 
as dependent variables in the following analyses in order 
to investigate whether the SCR and HR indicators could 
distinguish the guilty group from innocent participants 
(Klein Selle et al., 2016).

3   |   RESULTS

3.1  |  Behavioral results

A 2 × 2 ANOVA on the accuracy of the participant re-
sponses was performed using the group (guilty vs. 
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innocent) as a between-subject factor and the item type 
(probe, irrelevant item) as a within-subject factor to re-
veal the significance of the stimulus type, F(1, 58) = 8.14, 
p < .05, η2 = 0.12), and interactions between the stimulus 
type and the group, F(1, 58) = 14.19, p < .001, η2 = 0.20). 
The group was found to have no significant effect, F(1, 
58) = 1.02, p > .05.

The RT results revealed a significant effect of the item 
type, F(1, 58) = 26.57, p < .001, η2 = 0.31, as well as a sig-
nificant interaction between the item type and the group, 
F(1, 58)  =  21.90, p < .001, η2  =  0.27 (Figure  2a). A sim-
ple effect test showed that the RTs to the probe items in 
the guilty group were significantly longer than those to 
the irrelevant items, F(1, 58) = 48.36, p < .001, η2 = 0.46. 
However, the RTs to both probe and irrelevant items in the 
innocent group did not reach statistical significance, F(1, 
58) = 0.11, p > .05.

3.2  |  fNIRS results

A 2 × o
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3.4  |  Correlation analysis of RT, 
physiological data, and fNIRS data

The correlations between the RT, physiological, and 
fNIRS data in the guilty and innocent groups based on the 
Z-scores of the CIT effect (probe minus irrelevant) were 
examined. The averaged Z-scores of the HbO changes 
among the 24 fNIRS channels were used to investigate 
correlations with the other indicators. The results showed 
that there were no significant correlations between RT, 
SCR, HR, and fNIRS data in either the guilty or the inno-
cent group (averaged by channels, see Table 2).

3.5  |  Individual analysis using single and 
combined indicators

Receiver operating characteristic (ROC) curves were 
constructed using single or combined indicators (RT, 
SCR, HR, and fNIRS data), providing a measure of 

detection efficiency that did not only rely on a single 
arbitrary cut-off point, but was able to quantify the ac-
curacy of the classification between two stimulus cat-
egories using signal detection theory (Ben-Shakhar 
et al., 1999; Green & Swets, 1966). In the ROC curves, 
the groups were set as state variables, and the data from 
the different indicators were set as test variables. The 
ROC curves provided a series of data showing the “True 
positive” vs. “False positive” rate at different decision 
thresholds for specific indicators. Moreover, to inves-
tigate whether the use of combined indicators had a 
higher detection efficiency than the use of single indica-
tors, the area under the curve (AUC), which quantifies 
the separation between two distributions independently 
of any specific classification threshold, was computed to 
represent the detection efficiency of the different indi-
cators. The AUC assumes values between 0 and 1, and 
an area of 0.5 indicates a lack of differentiation between 
the two distributions. An area of 1 indicates that there 
is no overlap between the two distributions, and thus it 

T A B L E  1   Statistical analysis using fNIRS oxyhemoglobin (HbO) changes

Channels

MNI coordinates

Brain regions Probability
Group × 
stimulus AUCX Y Z

Ch 1 −53 38 13 Left IFG (BA45) 0.92 F = 7.49* 0.70**

Ch 2 −48 48 12 Left IFG (BA46) 0.54 F = 18.29*** 0.80***

Ch 3 −52 42 −9 Left IFG (BA46) 0.87 F = 3.85 N/A

Ch 4 −46 51 13 Left IFG (BA47) 0.69 F = 21.56*** 0.80***

Ch 5 −41 57 11 Left MFG (BA46) 0.98 F = 23.80*** 0.85***

Ch 6 −32 65 9 Left SFG (BA10) 0.52 F = 15.96*** 0.79***

Ch 7 −39 58 14 Left MFG(BA47) 0.7 F = 22.75*** 0.85***

Ch 8 −30 62 −15 Left MFG (BA11) 0.9 F = 21.31*** 0.85***

Ch 9 −20 72 9 Left SFG (BA10) 0.99 F = 13.58*** 0.77***

Ch 10 −3 70 8 Left SFG (BA10) 0.76 F = 14.36*** 0.79***

Ch 11 −18 66 −17 Left MFG (BA11) 0.57 F = 13.70*** 0.78***

Ch 12 −6 68 −18 Left SFG (BA11) 0.36 F = 10.92*** 0.73**

Ch 13 9 74 8 Right SFG (BA10) 0.93 F = 8.34** 0.73**

Ch 14 25 71 9 Right SFG (BA10) 0.99 F = 13.09** 0.76**

Ch 15 8 68 −20 Right SFG (BA11) 0.56 F = 9.84** 0.73**

Ch 16 18 66 −18 Right MFG (BA11) 0.52 F = 10.82** 0.72**

Ch 17 34 66 8 Right SFG (BA10) 0.64 F = 12.93** 0.78***

Ch 18 46 56 9 Right MFG (BA46) 0.99 F = 16.21*** 0.80***

Ch 19 28 62 −18 Right MFG (BA11) 0.97 F = 13.07** 0.77***

Ch 20 40 57 −17 Right MFG (BA47) 0.97 F = 16.54*** 0.79***

Ch 21 53 44 10 Right IFG (BA45) 0.54 F = 9.73** 0.81***

Ch 22 59 33 12 Right IFG (BA45) 1 F = 4.83* 0.69*

Ch 23 49 49 −16 Right IFG (BA47) 0.6 F = 11.38** 0.74**

Ch 24 54 40 −12 Right IFG (BA47) 0.99 F = 5.21* 0.71**

*p < .05; **p < .01; ***p < .001.
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is possible to detect accurately whether the examinee is 
guilty or not.

The results of the ROC analyses showed that RT can 
effectively discriminate guilty from innocent participants 
above the level of chance (AUC = 0.80, CI = [0.68,0.93], 
p < .001). Physiological indicators, including SCR and HR, 
could also discriminate guilty from innocent participants 
above the level of chance (AUC = 0.89, 0.74, CI = [0.81, 
0.97], [0.61, 0.86], ps < .01). ROC analyses were also con-
ducted on the channels showing significant group × stim-
ulus interaction effects (23 of the 24 channels, ps < .05, 
except channel 3, p > .05), with the results showing that 
all 23 channels’ fNIRS data could effectively differentiate 
between guilty and innocent participants (AUC = [0.69, 
0.85], ps < .05, Table 1).

In our study, to ensure that the combined indicators 
could be compared in the same way, they were generated 
based on the standardized values of CIT effect (probe 
minus irrelevant), and were averaged in equal weighted 
value (Hu et al., 2013; Sai et al., 2014). More importantly, 
the highest AUCs were obtained when all the indicators 
were combined (AUC = 0.94, CI = [0.89, 1.00], p < .001, 
see Table 3).

4   |   DISCUSSION

In the current study, we applied fNIRS to record brain 
imaging data while quantifying RT, SCR, and HR in a 
classical three-stimulus CIT. We aimed to test whether 
combinations of these indicators could improve the de-
ception detection efficiency. Our results showed that 
probe items elicited significantly longer RTs, larger 
SCRs, slower HRs, and higher HbO changes in the in-
ferior prefrontal gyrus (IFG), the middle frontal gyrus 
(MFG), and the superior frontal gyrus (SFG) compared 
to irrelevant items for participants in the guilty group but 
not in the innocent group. Our results also showed that 
single indicators such as RT, SCR, HR, and fNIRS data 

F I G U R E  4   Mapping of the grand-
averaged HbO concentration changes 
associated with the probe items for the 
guilty group (top left), the probe items 
for the innocent group (bottom left), the 
irrelevant items for the guilty group (top 
right), and the irrelevant items for the 
innocent group (bottom right). We found 
that in the guilty group, the probe items 
elicited higher hemodynamic responses 
than the irrelevant stimuli over the 
prefrontal cortex but not in the innocent 
group

T A B L E  2   Correlations between RT, SCR, HR, and fNIRS data

Guilty group Innocent group

SCR HR fNIRS SCR HR fNIRS

RT 0.18 −0.24 0.07 0.24 0.25 0.33

SCR −0.05 0.14 −0.05 0.10

HR −0.25 0.12
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can effectively detect deception with detection efficien-
cies of 0.74–0.89. Finally, the combination of RT, SCR, 
HR, and fNIRS imaging data can elevate the detection 
efficiency to 0.94.

For fNIRS imaging data, we found that probe items 
elicited significant higher HbO changes in the IFG, 
MFG, and SFG compared to irrelevant items in the guilty 
group participants, but not in the innocent group par-
ticipants. Our results were consistent with the findings 
from previous neuroimaging studies (Gamer et al., 2012; 
Kozel et al.,  2005, 2009; Langleben et al.,  2005; 
Suchotzki et al.,  2015). It has been suggested that the 
IFG is involved in inhibitory control during lying (Ding 
et al., 2012; Suchotzki et al., 2015; Yin & Weber, 2019). 
In the current study, when presented with their names 
and hometowns, participants in the guilty group were 
instructed to deny them by pressing the button, which 
was contradictory to the truth and required the addi-
tional function of inhibitory control. Participants in the 
innocent group only needed to respond honestly, and 
thus did not show the activation seen in the guilty group. 
In addition, it is widely recognized that the MFG plays 
an important role in response control (Kozel et al., 2005; 
Mameli et al.,  2010; Priori et al.,  2008). In the current 
CIT, participants in the guilty group had to suppress 
the right response and change it to the wrong response 
to probe items, while the participants in the innocent 
group were able to respond with the right answers to all 
items. Finally, previous studies have demonstrated that 
the SFG plays an important role in planning of complex 
actions and goal-processing (Fincham et al.,  2002; Li 
et al.,  2013, Ding et al.,  2014). In our study, for inno-
cent participants, the goal of this task is simply telling 

the truth, while for the guilty participants, they need to 
lie about probe items: their own names and hometowns. 
To achieve the goal of lying about probe items, guilty 
participants need to inhibit the truth and tell the false 
answer which are more complex than only tell the truth. 
Therefore, probe items only elicited significantly higher 
HbO changes in the IFG, MFG, and SFG compared to 
the irrelevant items in the guilty group, but not in the 
innocent group.

Our results showed that the physiological measure-
ments can also effectively differentiate guilty and inno-
cent participants. Specifically, we found larger SCR and 
slower HR values in response to probe items compared to 
irrelevant items in the guilty participants but not in in-
nocent participants. These findings are in line with pre-
vious autonomic-based CIT studies (Meijer et al.,  2016; 
Verschuere et al.,  2010). Klein Selle et al.  (2016) argued 
that different physiological measurements in CIT were 
driven by different mechanisms. Specifically, the SCR 
reflects orienting response theory, whilst HR and respi-
ration line length (RLL) reflect arousal inhibition (AI) in 
the fractionation model (Geven et al.,  2018; Klein Selle 
et al.,  2016, 2019). In the current study, the guilty par-
ticipants were presented with probe items that were sig-
nificant to them, while innocent participants were only 
presented with unfamiliar stimuli as probe items. Hence, 
increased SCRs were only apparent in the guilty group and 
not in the innocent group. In addition, arousal inhibition 
indicates that executive function allows one to intention-
ally inhibit a dominant automatic or prepotent response 
(Miyake et al., 2000). However, this would be at the cost of 
physiological responses. Accordingly, in our study, partic-
ipants in the guilty group suppressed their physiological 
responses to avoid being detected as guilty, resulting in 
physiological costs and eliciting slower HRs (Pennebaker 
& Chew, 1985).

RT was also found to effectively distinguish guilty 
from innocent participants in the current study. This in-
dicated that the guilty participants had significantly lon-
ger RTs for probe items compared with irrelevant items 
but that this did not occur in the innocent group, which 
is consistent with previous findings on RT-based CIT 
(Ben-Shakhar, 2012; Seymour et al., 2000). The cognitive 
view on deception holds that deception consumes more 
cognitive resources than truth-telling (Vrij, 2008). In the 
present study, innocent participants only needed to react 
honestly to all items. In contrast, the participants in the 
guilty group with crime-related knowledge were required 
to press the button to indicate that they did not recog-
nize probe items to avoid being identified as guilty, which 
would consume more cognitive resources. Thus, com-
pared with innocents, there was a longer reaction time to 
probe items in the guilty participants only.

T A B L E  3   Receiver operating characteristic (ROC) analyses and 
the area under the ROC curve (AUC) of the single and combined 
indicators

Indicators AUC

95% CI

Lower Upper

fNIRS (24 Channels) 0.82*** 0.71 0.93

SCR 0.89*** 0.81 0.97

HR 0.74** 0.61 0.86

RT 0.80*** 0.68 0.93

SCR & fNIRS 0.91*** 0.84 0.99

HR & fNIRS 0.88*** 0.80 0.97

RT & fNIRS 0.88*** 0.78 0.97

SCR, HR & fNIRS 0.94*** 0.88 1.00

SCR, RT & fNIRS 0.93*** 0.86 0.99

SCR, HR, RT & fNIRS 0.94*** 0.89 1.00

*p < .05; **p < .01; ***p < .001.
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Our results showed that there were no significant 
correlations between RT, SCR, HR, and HbO changes 
in either group, suggesting that the different indica-
tors may operate by different mechanisms (Klein Selle 
et al., 2016; Matsuda et al., 2011; Suchotzki et al., 2015). 
RT reflects cognitive effort, SCR reflects orienting re-
sponse, HR reflects arousal inhibition, and fNIRS 
reflects response inhibition. In terms of individual de-
tection efficiency, we found that the combination of RT, 
SCR, HR, and fNIRS data effectively improved the de-
ception efficiency. The AUC for deception detection was 
94% when combined with the SCR, HR and fNIRS data. 
This was higher than the AUC using RT (80%), SCR 
(88%), HR (75%), or fNIRS (82%) alone. Previous fMRI-
based brain imaging studies have also found similar de-
ception detection efficiencies (Hsu et al.,  2019; Nuñez 
et al.,  2005). Thus, using combining autonomic mea-
surements with brain imaging, unlike the unimproved 
AUC in the fMRI-based study (Kozel et al., 2009), our 
results are comparable to those of fNIRS-based studies 
that combined autonomic or RT with fNIRS-based brain 
imaging data to enhance the AUC (Bhutta et al., 2015; 
Sai et al., 2014). Therefore, in this study, the autonomic 
and central nervous systems were successfully inte-
grated to detect deception. Indeed, as previous studies 
suggested (Gamer, 2011), different indicators could as-
sociate with different psychophysiological mechanisms 
and the combination of measures may reduce random 
error and enhances reliability, thus the combination 
of multiple measures can elevate the detection effi-
ciency in the current CIT (Gamer et al.,  2008; Meijer 
et al., 2014).

Taken together, the current study demonstrated that 
single indicators such as RT, SCR, HR, and fNIRS data 
could be used to effectively detect deception. The combi-
nation of SCR, HR, and fNIRS imaging data could increase 
the AUC to indicate a highly accurate level of deception 
detection (0.94). These findings show that the combina-
tion of multiple indicators is a feasible method to improve 
deception detection.
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